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Abstract. I t  has been suggested that the existence of one-dimensional irreps of a group 
leads to symmetries in the Racah algebra of the group. The familiar 2jm symbol arises as a 
special case of these symmetries where the one-dimensional irrep is the identity irrep. We 
derive the general result and give examples for the symmetric groups and for the point 
groups. These examples show that these new symmetries are more complicated than the 
previous suggestions imply. 

1. Introduction 

In the early 1960's both Hamermesh (1962) and Griffith (1962) noted that the existence 
of more than one one-dimensional irrep of a group will lead to symmetries in the Racah 
algebra of the group. More recently, van Zanten and de Vries (1970) mentioned these 
symmetries in connection with the class structure of finite groups, and Lulek and Lulek 
(1976a, b) have confirmed Griffith's work on the symmetries for the octahedral double 
group and its subgroups. In this paper we relate these special symmetries of the j and jm 
symbols to the permutation symmetries of the j and jm symbols as developed by Wigner 
(1940), Derome and Sharp (19651, Derome (1966), Butler (1975) and Butler and 
Wybourne (1976a, b). 

The symmetries we obtain are more general than those of Hamermesh (1962) and 
Schindler and Mirman (1976). Further, their symmetries, derived only for the sym- 
metric groups, do not hold simultaneously with permutation symmetries. 

Many of the pure rotation point groups have several one-dimensional irreps and 
thus exhibit the symmetries discussed here. These symmetries could be used to reduce 
the size of the tables recently prepared (Butler 1979). However, the largest of the point 
groups is the icosahedral group and it has only one one-dimensional irrep, the identity, 
so the saving in space would not be great. 

The case of the symmetric groups is rather more interesting. The symmetric groups 
are much used in nuclear calculations (see, for example, Vanagas 1971). They all have 
two one-dimensional irreps, the identity (scalar) irrep, [n], and the alternating 
(antisymmetric) irrep, [l"]. 

In 0 2 we discuss the properties of one-dimensional irreps in preparation for the 
definition of the A symbols in 0 3. Sections 4 and 5 use these A symbols to derive 
symmetry relations for 3jm and 6 j  symbols. Section 6 discusses the symmetric groups 
as an example. Using the Young-Yamanouchi basis we derive the A i ,  phases for the 
3jm factors for the imbedding S, 3 thus factorising Hamermesh's result 
(Hamermesh 1962, p 266). 
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1358 P H Butler and A M Ford 

An essential requirement for Schur's lemma I1 (Hamermesh 1962, p 100) is that the 
bases of irrep spaces are chosen so that for similar irrep spaces the irrep matrices will be 
identical. For this reason we can label an irrep space with two labels, the label A (the 
same for equivalent irreps) and a label (or set of labels ) x ,  the same only if spaces are 
identical. Thus we have (Butler 1975, equation (2.4)) 

The product VxlA,C3 V,,,, of two irrep spaces is a representation spacs but a unitary 
transformation is required to reduce the space into a direct sum of spaces 
CrA V ( + 1 A 1 X 2 A 2 ) r A .  Because of condition (1.1) the transformation can and is chosen to be 
independent of the x labels (Butler 1975, equation (3.2)):  

The index r is required to distinguish sets of equivalent irrep spaces when they arise 
(Derome and Sharp 1965). Because the coupling coefficients are independent of the x1 
and x 2  labels, the separation and phases of the equivalent irreps rA as r varies must be 
fixed once and only once for each A 1 A 2 .  This property can be used (Derome 1966) to 
deduce the permutation symmetries for the Racah-Wigner algebra of a group. 

It is well known that jm  symbols are easier to tabulate and use than are the coupling 
coefficients. The 2jm symbol 

where / A  1 is the dimension of the irrep A ,  relates the phase properties of the complex 
conjugate irreps A and A * .  In particular, we have (Derome 1966, Butler 1975) 

(1.4) 

Note that A (I?)*,,, is the complex conjugate of the matrix element A U?),,. whereas 
A *(R)rlf  is the standard matrix element of some irrep A *. The 2jm symbols can always 
be chosen real (Butler and Wybourne 1976a) and, by suitable choice of IA*l*) in terms 
of lAl)*, of the form ( A ) / / ,  = ( A ) a * S 1 , r * .  

The 3jm symbol defined by 

cannot always be chosen real (Butler 1975). The phases and multiplicity separations of 
the 3jm symbols are chosen so the symbols have the highest possible symmetry 
properties. For SOs in the S02(JM) basis, the coupling coefficients were computed 
before the recognition (Wigner 1940) of the 3jm symmetries, hence the presence of an 
historical phase, H ( J J ~ J ) s o ~  = (-) 

The 6 j  and 9 j  symbols relate different schemes of coupling three or four irreps to 
give a fourth or fifth respectively. The relation of these 6 j  and 9 j  symbols to the 
appropriate overlap of the resultant bases, their relation with sums of products of 3jm 

J ,  - I,+ J 
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symbols and the symmetry properties of j and jm  symbols can all be found in Butler 
(1975). 

2. One-dimensional irreps 

This section discusses the multiplication properties of one-dimensional irreps. For 
every such irrep we can find a set of special 3jm symbols with properties similar to those 
of 2jm symbols. 

Let E be a one-dimensional irrep of a group and A any irrep of the group. We name 
the representation obtained by the Kronecker product of A * on E *  the tilde of A : 

X = A *  X E * ,  (2 .5 )  

With this definition ( A E X )  form a triad in the sense that A x E x i  contains the identity 
representation. 

is clearly a representation; to show that it is irreducible we use the following 
lemma. 

Lemma. If r is a reducible representation, say r = y1 + y 2  where y1 and y 2  are 
representations, and p is also a representation, then r x p is reducible. 

Proof. By the distributive property of the Kronecker product 

but each of y1 x CL and y 2  x p are representations. 
Theorem. If A is irreducible then so is X. 
Proof. Using the associative laws after multiplication of X by E 

A X E  = ( A *  x E * )  x E = A *  x ( E *  xe ) .  (2.3) 

But E x E *  is one-dimensional and contains the identity irrep 0, so must be the identity 
irrep. Hence 

(2.4) X X  E *  = A *  x E *  x E = A *  x o = A*.  

But by the lemma, if X is reducible so must A *  (and A )  be reducible, which is a 
contradiction. 

There are two possibilities for E to consider, E real and E complex, giving 

(2.5) 
2 

E = o  or € x e * = O  
I 

respectively. In both cases we have that = A, for 

X =  (z)* xE* = ( A *  .E*)* xE* = A  X E  x E *  = A ,  

but only for the real case do we have (3) = (A)*, for 
N 

@ * ) = A X E *  

but 

(A)* = ( A *  X E * ) *  = A X E .  
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Consider, for example, Cs, the cyclic group on five objects with its five one-dimensional 
irreps. With a particular choice of irrep E we have the following character table, 
(U = exp %Ti): 2 

cs 1 c: c: c: c:: 

0 1 1 1 1 1  
e 1 w w w w  

A 1 0 3 w  w o 
A *  1 o2 w 4  w w 3  

2 3 4  

E *  1 w 4  w 3  w z  w 
4 2  

The various products are easily evaluated to show that 

(F)=AXE*=A* 

but 

(i)* = A  X E = E * .  

In the following we denote the single partner of the irrep space V, as / E )  and a typical 
partner of V, as IAl).  The coupling of V, and V, to V(,,)p may be performed as 

The coupling coefficients ( i* l ’ lAl ,  E )  are elements of the transformation from the 
product basis lhl) le) to the standard basis for irrep A*. If this latter basis has no other 
conditions imposed upon it, we could certainly choose all (i*l’lAl, E )  as + l .  This is not 
the case. V{,.p may be equivalent to V, so the latter basis may depend directly on the 
former. In other instances a relationship may be indirect, for example by being a 
consequence of the complex conjugation symmetries. Thus we must explore whether 
the various requirements can be satisfied simultaneously. 

If abc is a permutation T of 123 then we have (Butler 1975, equation (6.2)) 

(2.10) 

Furthermore once chooses bases such that the various kets are partners of various irreps 
in a group-subgroup chain. If the group-subgroup branching has no multiplicity then it 
will force a one-to-one correspondence between IAl)  and Ill’) = lir). With a group- 
subgroup chain G 3 H one writes a partner of irrep A of G ,  u of H as /hami). The ket \ E )  

is now labelled leq),  77 a label of a one-dimensional irrep of H. It follows that G*,  
defined as (+ x 77, is an irrep of H. The coupling coefficients for the group G in the G 3 H 
basis may be factorised into isoscalar factors for G 2 H and coupling coefficients for H. 
The jm symbols factor in the same way into a G-H-jm factor and a H-jm symbol. For 
the remainder of this paper we write our results in terms of jm symbols to exploit their 
simpler symmetries. We make the choice of phase of Butler (1975, equation (5.2)), 
namely omitting the phase H(AlA2A3r) of (1.5). 
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3. Special 3jm factors, A symbols 

We can now define a special 3jm symbol, the A symbol, as a generalisation of the 2jm 
symbol: 

= /A/’/’(A r j O  * ‘ )  

When E is the identity irrep, 0, the A symbol is a 2jm symbol 

and = A *. By the factorisation mentioned above we have (Butler 1975, equation 
(1 3.2)) 

We now define a A factor 

(3.3) 

(3.4) 

In cases where no ambiguity arises over a choice of E we shall abbreviate AA ( ~ q ) ~ , , , ~  
to A:ua,d; thus 

From (2.9) and (3.1) we see the A:,,,+are block-diagonal, each block being equal in 
dimension to the range of the branching multiplicity label a. We might expect that we 
can choose our basis kets such that the A factors will be diagonal in the branching 
multiplicity and real, because the 2jm factors are (Butler and Wybourne 1976a) 

AA (O),,,,,* = *aaa,.  (3.6) 

However, calculations show that while this is possible for OL 2 T, it is only true if care is 
taken in choosing the sign in (3.6). 

4. Symmetries of 3jm factors 

In this and the following sections we shall consider the case of E real. Although our 
results are easily generalised tacomplex E ,  or to several ci, the number of labels required 
complicates the notation. 

The result of coupling A T  and A T  to some A 3  may be compared with the coupling of xl and i2 to A3. The precise relationship between the 3jm factors follows immediately 
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(4.1) 

de Vries and van Zanten (1972) obtain a formula for the norm of 6 j  symbols of the form 
appearing here. However, their result, which is obtained from character theory, is valid 
only for multiplicity-free 6j’s. Their result also follows immediately from the ortho- 
gonality relations of 6 j  symbols (Butler 1975, equation (9.11)). In such cases the 
dimension factors in (4.1) combine with the 6 j  norm to give the result that a 3jm with 
two tildes equals a product of phase factors and a 3jm with two stars. 

Equation (4.1) modifies the symmetry relation derived by Hamermesh (1962, 
equation (7.216)) and Schindler and Mirman (1976a, equation (VI11.33)) for the 
symmetric groups. Their symmetry relation does not hold simultaneously with permu- 
tation symmetries as may be seen for the simple example of S3 3 S2.  The product in S3,  
[21]x [21], contains [3] in the symmetric part and [13] in the antisymmetric part: 

In S2 we have that 

so that the 3jm factor 

is unchanged on interchanging columns, but the 3jm factor 

changes sign. Noting i m l [ i l >  = /[211[l21) and 1[31[i]) = ~[131[111) for E = [13] shows that 
the tilde symmetry cannot commute with the interchange symmetry, but note that both 
symmetries hold simultaneously. 

5. Symmetries of 6j  symbols 

A similar symmetry relation to the above 3jm relation may be derived as a special case 
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of the Biedenharn-Elliott sum rule (Butler and Wybourne 1976a, equation (27)): 

(5.1) 

This relationship between a 6 j  symbol and one with the bottom entries tilded is hardly 
simple enough to be called a symmetry relation. If the summations over the multiplicity 
indices could be shown to vanish then it would be of much use, but this is not so. 

For example, the symmetric groups SI  for I 2 6 are not simple phase so the sums over 
si and si survive for certain irreps (Butler 1975, equation ( 6 ) ) .  Nevertheless, this 
equation is of some use in deciding upon multiplicity separations when permutation 
symmetries do not suffice. 

Consider the calculation in Butler (1979) of the 6j  symbols of the octahedral double 
group. The product U ' X  U' contains the irreps T 1  and T2 twice each. The T2 
multiplicity is resolved by permutational symmetry, but the T 1  multiplicity is not. A 
first calculation of the table of 6 j  symbols used the resolution of the multiplicity 
obtained by requiring that the 6j  

I if' ~Joooo 
be zero. This led to values of the 6j  symbols describing the tilde symmetry as if 

then 

It is clear that altering the multiplicity separation by taking a linear combination of the 
form 

with 

U==( 1 2  ') 
J5 1 - 2  

(5.4) 

( 5 . 5 )  

will give a diagonal X ' .  This transformation, when applied to the entire set of 6j  
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symbols, makes some 6 j  symbols zero which were not before, and some non-zero which 
were before. In particular, this new separation is equivalent to requiring that 

be zero. The new separation happens to give simpler numbers for the values of 
octahedral 6 j  symbols (only factors of 2 and 3 appear). The structure of the products of 
S5 shows that a similar result holds for S5, but for S6 certain products related by the tilde 
operation have their own symmetry separations. No proof is available to show the two 
'symmetries' give equivalent separations. To go back to the more general situation of 
9: 3, where E is not assumed real, the tetrahedral group provides a counter-example: 
T x T contains T twice, once each in the symmetric and the antisymmetric parts, and 

is not diagonal in r, s. 

6. The symmetric groups 

In this section we use the Young-Yamanouchi basis to derive the values of the phases 

A"([l'], [l'-'])&,i = A b  (6.1) 

for the imbedding St 13 SI-  1. An account of the Young-Yamanouchi basis can be found 
in Hamermesh (1962, chapter 7). Partitions ( A )  = ( A l ,  A z ,  . . . , Ai)  of the integer 1 are 
used to label the irreps of Sl and a set of partitions (A ) (p )  . . . will thus label a basis ket in 
the basis Sr 3 3 .  . . . The Y symbol is an abbreviated notation in which the basis ket 
is denoted by a series of integers listing where the cells are removed from a Young 
diagram in the reduction S,  3 for 1 L n 5 1. The two basis kets of the [21] irrep of 
SJ are labelled 

1[211[21C11) = 1211) 
and 

Hamermesh obtains the value of the A phase for SI in the Young-Yamanouchi basis 
as 

AA(l ' ) i i  = A: = (-)"I 

where n, is the number of interchanges of neighbouring elements required to change the 
Y symbol i into the Y symbol in natural order. Now this is the sum of the numbers of 
cells of lesser number below each cell. In view of this, thz value of the A factor for 
St 3 SI-1 is f as the number of cells below the cell numbered 1 is even or odd. 

The result may be compared with that of Butler and King (1973), who showed that if 
A = then A'  contains [ l"]  in the symmetric or antisymmetric part depending on 
whether there is an even or odd number of cells below the leading diagonal of the Young 
diagram. 
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7. Conclusion 

In this paper we have shown how a one-dimensional irrep other than the identity irrep 
leads to symmetries in the Racah algebra of the group. We have extended the 
symmetries of Hamermesh for non-simply reducible groups and shown how they can be 
made to hold simultaneously with permutation symmetries. We have given examples 
which show that the application of the symmetries is not trivial, contrary to the 
speculations of Schlindler and Mirman (1976a, b). We have factorised Hamermesh’s 
result for the A phases of the symmetric groups. 
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